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The mechanisms which initiate secondary flow in developing turbulent flow 
along a corner are examined on the basis of both energy and vorticity considera- 
tions. This is done by experimentally evaluating the terms of an energy balance 
and vorticity balance applied to the mean motion along a corner bisector. 
The results show that a transverse flow is initiated and directed towards 
the corner as a direct result of turbulent shear stress gradients normal to the 
bisector. The results further indicate that anisotropy of the turbulent normal 
stresses does not play a major role in the generation of secondary flow. Possible 
extensions of the present results to other related flow situations are ahstrated 
and discussed. 

1. Introduction 
In  developing turbulent flow along a corner, a transverse circulatory flow 

arises which is superimposed on the primary flow. This flow, which has been 
identified as secondary flow of the second kind by Prandtl(l952, p. 148), is of the 
same order of magnitude as the outward transverse flow associated with normal 
boundary-layer development, but differs from this flow because it is directed 
towards the wall in the vicinity of the corner bisector. As a consequence, second- 
ary flow convects momentum, vorticity and energy of the mean motion into the 
corner and then, by virtue of continuity, these quantities are transported away 
from the corner along the bounding walls. A similar transport pattern applies 
for transferable quantities associated with the turbulent motion. This effect, 
in turn, distorts the local flow structure and, in particular, lines of constant axial 
mean velocity in planes normal to the axial flow direction (isotachs), as shown 
in figure 1. The distortion of isotach patterns in turbulent channel flow was 
perhaps first observed by Nikuradse ( 1926), who measured isotach distributions 
in channels of various cross-sectional shapes and found isotachs to be distorted in 
a manner indicative of secondary flow. Subsequent flow visualization studies by 
Nikuradse (1930) confirmed the existence of secondary flow in the form of stream- 
wise helical vortices in the corner region. 

The first explanation of this phenomenon was offered by Prandtl (1926), 
who suggested that secondary flow is caused by turbulent velocity fluctuations 
in regions of isotach curvature. In  particular, Prandtl postulated that velocity 
fluctuations tangential to m isotach in regions of isotach curvature cause a 
transverse mean flow to develop which is directed from the concave towards 
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FIGURE 1. Typical isotach patterns for flow dong a corner. 

the convex side of the isotach, as shown in figure 1. Implicit in this model is the 
assumption that tangential velocity fluctuations a t  a given point on a curved 
isotach are greater than normal velocity fluctuations, a condition which has been 
verified experimentally by Gessner & Jones (1961). 

Alternative explanations of the phenomenon have been proposed by Towns- 
end (1961) and by Eichelbrenner and his co-workers (Eichelbrenner & Toan 
1969; Eichelbrenner & Preston 1971); these are based on arguments related to 
the behaviour of certain terms in the transverse Reynolds equations. Other 
investigators suggest, however, that secondary flow arises because of streamwise 
vorticity which is generated in the corner region (Einstein & Li 1958; Brundrett 
& Baines 1964; Perkins 1970). The foregoing hypotheses are all based on argu- 
ments which presume cause-and-effect behaviour of certain flow variables in the 
corner region. In  particular, all of these hypotheses assume, either explicitly or 
implicitly, that anisotropy of the transverse normal Reynolds stresses isrespon- 
sible for the generation of secondary flow. In  the discussion which follows, it will 
be shown that the normal Reynolds stresses do not have a dominant role in the 
generation of secondary flow, but that, instead, this flow is due primarily to 
Reynolds shear stress gradients in the corner region. 

2. Development of the model 
In order t o  write the governing system of equations in a form amenable to  

analysis, it is expedient to apply the boundary-layer approximations (cf. 
Hinze 1959, 9 7-2) to the equations of motion which describe steady, incompres- 
sible, developing turbulent flow along a corner. If the Reynolds stress components 
are all assumed to be of the same order of magnitude, then the Reynolds equations 
which apply outside the viscous sublayer can be written as 
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FIGURE 2. Static pressures at end-points of selected paths of integration. 

where p is the fluid density, v is the kinematic viscosity, p is the mean static 
pressure, U ,  V and W are mean velocity components, u, v and w are fluctuating 
velocity components in the z, y and z directions, respectively, and an overbar 
denotes a time-averaged quantity. 

The above system of equations contains terms involving gradients of all 
Reynolds stress components except 2. It is thus difficult to determine from these 
equations whether turbulent shear or normal stress gradients are primarily 
responsible for the generation of secondary flow. An attempt has been made by 
Townsend (1961) to deduce the existence of secondary flow by integrating reduced 
forms of ( 2 )  and (3) along selected paths of integration normal to the bounding 
walls of a corner. In  order to demonstrate this procedure, consider developing 
turbulent flow within a quadrant of a channel whose cross-section is square and 
whose sides are of length 2a (figure 2). If the transverse Reynolds equations are 
to be integrated along paths such as AB and BC shown in the figure (the procedure 
followed by Townsend), it is necessary to consider extended, rather than reduced, 
forms of ( 2 )  and (3), namely 
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since these paths originate at a bounding wall, extend through the viscous sub- 
layer and terminate in the outer portion of the boundary layer. If (4) and ( 5 )  are 
integrated along the paths AB and BC respectively, then noting that 

P(0, 20)  = P(Y0,O) 
on the basis of symmetry considerations, the pressure difference p(a, 0) -p(yo, 0) 
can be expressed as 

in which the viscous terms ,uaV/ay and pa W/ax evaluated a t  (a, zo) have been 
omitted, but all other terms which are not identically zero have been retained. 
An alternative expression can be developed for his pressure difference by inte- 
grating (4) along the path CD to yield 

in which the termspaV/ay evaluated at (a, 0) and (yo, 0) have been deleted because 
V = 0 along the wall z = 0. 

Equations (6) and (7 )  are alternative expressions for the pressure difference 
p(a, 0) - (yo, 0) and are mutually compatible equations. In  the development given 
by Townsend, however, the viscous and turbulent shear stress terms in (4) and 
(5) are omitted, in turn, resulting in an apparent pressure anomaly along the 
wall x = 0. This anomalous behaviour occurs because the reduced form of (7) 
which applies when the shear stress terms are deleted predicts that ~ ( u ,  0) -p(yo, 0) 
is zero, whereas the corresponding reduced form of (6) predicts that this pressure 
difference is equal to pG(u, zo) -pG(a, xo) ,  which is not equal to zero because 
G(a,zo) < vZ(a,x,) within the interval 0 < zo < a (cf. Brundrett & Baines 1964, 
figure 7). In order to eliminate this apparent anomaly, Townsend suggests that a 
transverse circulatory flow pattern must be present in which the fluid motion is 
directed from the corner towards the wall bisector near a bounding wall. On the 
basis of (6) and (7) ,  however, it is evident that no pressure anomaly actually 
exists, and consequently arguments based on anomalous pressure behaviour 
cannot be used to explain the origin of secondary flow. 

An alternative model for the generation of secondary flow has been suggested 
by Eichelbrenner & Preston (1971), and is based on wall static pressure behaviour 
in the corner region coupled with the asymptotic behaviour of the transverse 
normal Reynolds stresses at  the outer edge of the boundary layer. In  formulating 
the model, (2) is first rewritten in terms of y‘, z’ co-ordinates shown in figure 2 
and then integrated along the path OE to yield an expression for p ( y ,  zo) at the 
point E ,  which is stipulated as being at  the outer edge of the boundary layer. 
An alternative expression for p (  yo, zo) is also developed by integrating (3) along 
the path DE and assuming that 8E/ay N 0 along this path. The resulting expres- 
sions are then compared, and it is shown that p(0,O) > p(yo, 0) or, equivalently, 
that a transverse static pressure gradient exists along the wall z = 0 in the near 
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FIGURE 3. Model of secondary flow development proposed by Eichelbrenner & Preston 
(1971). (a) Multi-vortex flow structure in corner region. (b)  Displacement of vortex lines 
in the axial flow direotion (view on plane z = 0). 

vicinity of the corner. On the basis of this result, the authors state that a second- 
ary-flow vortex will be created within the triangle OED and, in fact, that a multi- 
vortex flow structure will be induced adjacent to the bounding walls of a corner as 
long as the flow is still developing (figure 3a). The authors then reason that, for 
flow in a square channel, vortex lines of the secondary flow vortices will converge 
toward the channel midplane as the flow develops (figure 3 b ) ,  with the vortices 
closest to the midplane eventually collapsing until only one secondary-flow 
vortex exists in each octant of the channel cross-section. Implicit in the above 
reasoning is: (i) the existence of a series of static pressure maxima and minima 
along the bounding walls of a corner for developing flow; (ii) an undulating iso- 
tach pattern, as indicated by the isotach U/U, = 1 in figure 3(a ) ;  and (iii) both 
positive and negative values of IT in the boundary layer above the wall x = 0. 

In  order to investigate whether or not this behaviour actually occurs, measure- 
ments of wall static pressure, primary-flow velocity and secondary-flow velocity 
were made in the present study in the developing flow region of a square channel. 
The details of the apparatus and the experimental techniques that were used are 
discussed in the appendix. For the present, it will suffice to note that no undula- 
tions in the isotach pattern were observed at x/D,  = 4,8, where x is the axial 
distance measured from the channel inlet and Dh is the hydraulic diameter of the 
channel (figure 4). Furthermore, at  x/D, = 8, measurements of W at intervals of 
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FIGURE 4. Isotach distributions in developing flow region of square channel; 
Re,, = 2.5 x lo6. (a) x/Dh = 4. (b)  x/Dh = 8. 

Ay/a = 0.1 within the range 0.3 6 y/a < 1.0 indicated that W was positive (direc- 
ted away from the wall z = 0) at  all measuring points. Wall static pressure mea- 
surements at  x/D, = 4,8 within the interval 0.01 < y/a < l also showed no dis- 
cernible variations to within the resolution accuracy of the micromanometers used 
for this particular measurement ( 0.001 in. water).? At Re, 3 U,D,lv = 2.5 x lo5, 
for example, the normalized incremental wall static pressure difference Ap/( +Gz) 
was less than 0.0015, where U, and U, are the bulk and core flow velocities in 
the axial flow direction, respectively. It would appear, therefore, that the multi- 
vortex flow structure proposed by Eichelbrenner & Preston is non-existent, a t  
least for developing turbulent flow in a square channel, and consequently the 
model they propose cannot be applicable to all turbulent corner flows. 

The foregoing discussion centred on proposed models for the generation 
of secondary flow which are based on the behaviour of certain terms in the 
transverse Reynolds equations. A modified form of these equations has been 
considered by Gessner & Jones (1965), who developed a momentum balance in 
terms of streamline co-ordinates referred to the secondary flow. In  that study 
each term in an equation applicable to flow- along a particular secondary-flow 
streamline was evaluated experimentally, with the exception of the static pressure 
term, which was used as a closing entry. On the basis of this information, the 
authors concluded that secondary flow originates because of small differences 

f It should be noted that these results do not imply that the wall static pressure was 
identically constant along the wall z = 0 because variations in wall sta.tic pressure do 
exist along the bounding walls of a corner of the basis of (6) and (7) .  These variations were 
not detected in the present study because of resolution limitations of the instrumentation. 
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between transverse static pressure and Reynolds stress gradients in the flow. 
Their conclusions are not definitive, however, because the term indicative of 
momentum transport by the secondary flow was two orders of magnitude less 
than the static pressure and Reynolds stress terms in the equation. 

In  addition to the hypotheses discussed above, other hypotheses have been 
proposed which are based on the behaviour of certain terms in the axial vorticity 
equation. In  turbulent corner flow studies the origin of secondary flow has been 
attributed primarily to the formation of streamwise vorticity in the flow (Brun- 
drett & Baines 1964; Perkins 1970), whereas secondary flow in boundedrectangu- 
lar jets is thought to originate because vortex filaments normal to the axial 
flow direction are stretched and reoriented near the bounding walls of the jet 
(Foss & Jones 1968). Both of the mechanisms cited above result in the develop- 
ment of axial vorticity in the flow. In  turbulent corner flow, for example, it  is 
possible to deduce that 5, the axial vorticity component of the mean motion, will 
be zero on a corner bisector and of opposite sign on either side of the bisector, as 
shown in figure 5 (a). This behaviour is consistent with the resultant secondary- 
flow patterns shown in figure 5 (b)  if it is noted that [ and Us are interrelated as 
follows: 

in which I? is the circulation, dr is a differential position vector along C, a simple 
closed curve in the y, z plane, and A is the area bounded by that curve. A positive 
value of [ thus is indicative of clockwise vorticity, which, on the basis of (S), is 
consistent with the clockwise secondary-flow patterns shown in figure 5(b ) .  
It should not be inferred from this behaviour, however, that the mechanismswhich 
cause streamwise vorticity to develop in turbulent flow along a corner (figure 5a)  
are necessarily responsible for the initiation of secondary flow, i.e. the transverse 
circulatory-flow patterns shown in figure 5 (b) .  

In order to determine the mechanism(s) responsible for the generation of 
secondary flow from a vorticity point of view, it is expedient to examine the 
vorticity transport equations for the mean motion after the boundary-layer 
approximations have been applied. If it is again assumed that all Reynolds 
stress components are of the same order of magnitude, and if 7 and 5 are defined 
as the mean vorticity components in the y and z directions, respectively, the 
resulting vorticity equations can be written as 

in which 17 N aUlaz, < 2: - aU/ay, and all terms are of the same order of magni- 
tude, at  least on the basis of the applied boundary-layer approximations. 

If the order of magnitude of terms in equations (9)-(11) is designated as 
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FIGURE 5. Experimentally observed (a) axial vorticity behaviour and 
(b) secondary-flow velocity patterns in the corner region. 

unity, then the next higher order terms which have been omitted in equation (9) 
are of the order L2/Ll, where Ll and L, are characteristic boundary-layer length 
scales in the axial and transverse flow directions, respectively, and L, < Ll. 
The measurements of Perkins (1970) indicate, however, that the terms on the 
right-hand side of equation (9), when grouped together in the form of differences, 
are only of the same order of magnitude as the next higher order terms omitted 
in (9). On the basis of these considerations, a modified form of (9) actually applies 
for the 6 component of mean vorticity, namely 

a t  a t  a t  a2E a2t au av au u-+v-+w-=v -+- +,$--+v--+g- ax ay a Z  (ay2 az2) ax ay ax 
a a~ azcw as - - 

ax( ax a y )  ayaz 
+-(+-w2)+ --- vw, (12) 

(;:2 &)- +- --- 

in which 5 = aW/ay- aV/az, 7 = ai7la.z- awlax, 6 = aV/ax- aU/ay, and all 
terms are at  least an order of magnitude lesB than the terms in (10) and (1 1). 
The foregoing results indicate that (12) describes only a second-order effect 
and that (10) and (11) are the equations which should be considered in 
examining the reasons why secondary flow develops from a vorticity point of 
view. These equations contain terms on the left-hand side which represent 
the convective transport of primary-flow vorticity by the secondary flow. The 
mechanism by which this transport process originates can be demonstrated most 
readily by experimentally evaluating the terms in (1 1) after this equation has 
been writtenalong a corner bisector in terms of the x, y' and z' co-ordinates shown 
in figure 2, and, indeed, this course of action will be pursued later in the paper. 
For the present, however, discussion will centre on energy concepts applied to the 
flow in order to develop a model which is more amenable to interpretation from a 
conceptual point of view. 

The only previous study in which energy concepts have been applied to turbu- 
lent corner flow is that of Hinze (1967), who examined the behaviour of terms in a 
mechanical energy balance applied to the turbulent motion. More specifically, 
Hinze showed that a transverse mean flow must be present whenever the produc- 
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tion of turbulent energy differs from the dissipation at a particular point in the 
flow. This transverse flow is in the form of a convective transport of turbulence 
kinetic energy by the secondary flow, and the production and dissipation terms 
responsible for this transport process include both shear stress components of the 
Reynolds stress tensor and correlations between components of the instantaneous 
turbulent rate of strain tensor. 

On the basis of the above comments it would appear that both turbulent 
stresses and strain rates must be considered in examining the conditions under 
which secondary flow will occur. It is not necessary to follow this approach, 
however, because the mechanism by which secondary flow originates is clearly 
discernible if one examines an energy balance applied to the mean motion. This 
can be done most conveniently by considering an energy balance along a corner 
bisector written in terms of the x, y’ and x’ co-ordinates shown in figure 2. The 
reduced form of the equation that applies after the boundary-layer approxima- 
tions have been introduced is the following: 

IA IB IIA IIB 

I1 c IID I11 IV 

where V’ is the secondary-flow velocity component in the y’ direction, 

is the total pressure of the mean flow and a and a are Reynolds shear stress 
components acting in the x, y’ and x, x’ planes, respectively. 

In  (13) each term can be interpreted as either a loss or gain in mean flow energy 
within an inertial volume element on the corner bisector depending, respectively, 
on whether the term is a positive or negative quantity. The sign of some of the 
terms can be determined by examining the experimental results of previous corner 
flow studies by Perkins (1970) and Gessner (1964), which apply for developing 
turbulent flow along a corner and fully developed turbulent corner flow, respec- 
tively. From the data of these two studies it is possible to deduce, for example, 
that terms IA and IB in (13) are both negative. More specifically, these terms 
are negative because the data show that U > 0 and aP,/ay’ > 0 along a corner 
bisector for flow under favourable pressure gradients, whereas V’ < 0 in the 
boundary layer (i.e. V’ is directed toward the corner) and, of course, aP,/ax < 0 
because of viscous effects in the flow. 

The negative sign of both IA and IB, in turn, implies a net flux of energy 
into a volume element on the corner bisector or, equivalently, a gain in mean 
flow energy within that element. The mechanism by which this gain in energy 
occurs can be interpreted as a net convective transport of mean flow energy 
into the volume element by the primary (IA) and secondary flows (IB), respec- 
tively. This behaviour implies that energy losses must occur within the volume 
element which necessarily lead to a transverse convective transport of mean flow 
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FIGURE 6. Origin of transverse turbulent. shear stress gradients 
in transitional corner flow. 

energy by the secondary flow. The problem, therefore, is to decide which of the 
energy transfer processes associated with the remaining terms in (13) is primarily 
responsible for the initiation of this transport process. 

The remaining terms in (1 3) represent the work done by the mean flow against 
gradients of the viscous (IIA and IIB) and turbulent ( I IC and IID) shear 
stresses, the production of turbulent energy from the mean flow (111), and the 
viscous dissipation of mean flow energy (IV). On the basis of data obtained by 
Brundrett (1963) and Gessiier (1964) for fully developed flow, it is reasonable to  
presume that I1 A ,  I1 B, I11 and IV are negative in sign for developing turbulent 
flow along a corner or, equivalently, that each term corresponds to a loss in mean 
flow energy a t  points along a corner bisector. Term I I C  may or may not corre- 
spond to a loss depending on the relative rates at  which U increases and -2 
decreases in the y’ direction. The foregoing terms, with the exception of I1 B 
and IID,  are all indicative of loss mechanisms in fully developed, two-dimensional 
turbulent boundary-layer flow where secondary flow is non-existent. It is reason- 
able t o  presume, therefore, that gradients associated with these terms will have a 
minimal influence on the generation of secondary flow in three-dimensional 
turbulent corner flow. Furthermore, it is also reasonable to presume that the 
energy losses associated with I1 B do not play a dominant role because viscous 
effects are generally confined to the immediate vicinity of a wall, and thus viscous 
stresses cannot initiate or maintain a transverse flow in the outer portion of the 
boundary layer. It would appear therefore that energy losses associated with the 
only remaining term in (13), namely IID,  must be the loss mechanism primarily 
responsible for the initiation of secondary flow. 

The validity of this argument can be examined by considering developing 
flow along a corner when the flow is in a state of transition. In  this type of flow 
it is known that isotachs in the near-corner region are as shown in figure 6 when 
turbulent bursts first appear locally in the flow (Zamir & Young 1970). Under 
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these circumstances 8Ula.z' is positive for z' < 0 and it is reasonable to presume 
that positive w' fluctuations in this region generally give rise to negative u fluctua- 
tions, so that a is negative. This type of reasoning is analogous to the reasoning 
that is used to deduce that u.2, is negative whenever aU/ay is positive in two- 
dimensional turbulent boundary-layer flows with no velocity maxima or minima 
in the boundary layer. If the foregoing argument is valid, then the converse must 
also be true, namely that a is positive for x' > 0 since aU/az' is negative in this 
region, 

On the basis of the preceding arguments it follows that a Z / a z '  is positive, in 
general, at points along a corner bisector for transitional corner flow. This 
behaviour implies that a( UUw')/az' is also positive and, consequently, a mechan- 
ism exists by which energy losses will occur which could possibly exceed other 
losses in the flow. If the primary flow cannot convect sufficient energy into volume 
elements on the bisector to compensate for these losses, then a transverse flow 
must be initiated which transports a net influx of energy into these volume 
elements. This statement is equivalent to saying that the energy transfer mechan- 
isms associated with terms IB and I I D  in (13) may well be dominant in tran- 
sitional flow so that energy losses incurred by the working of the mean flow 
against transverse turbulent shear stress gradients necessarily give rise to a 
convective transport of mean flow energy into the corner region in order to main- 
tain dynamic equilibrium. 

The validity of this hypothesis can be examined by experimentally evaluating 
the terms of (1 3) for transitional flow along a corner. This procedure can lead to 
experimental difficulties, however, because large-scale transitional boundary 
layers are difficult to realize in practice and the flow is inherently unstable. As an 
alternative approach, it would be more expedient to evaluate the terms of (13) 
for fully developed turbulent corner flow if it can be shown that the principal 
mechanism which maintains the secondary flow in this case is equivalent to the 
mechanism which initiates this transverse flow when the overall flow is in a state 
of transition. This equivalency can be demonstrated if it is first noted that (13) 
still applies along a corner bisector with no reduction in the number of terms or 
alteration in the sign of each term when the flow is fully developed. Furthermore, 
the preceding arguments which were used to eliminate all energy losses except 
those associated with the term I1 D in (13) as the possible initiating loss mechan- 
ism are also applicable to fully developed flow. It follows, therefore, that, if the 
energy losses associated with I1 D are responsible for the generation of secondary 
flow, they must also be responsible for maintaining secondary flow in a corner 
region when the flow is fully developed. 

3. Results and discussion 
In  order to examine the validity of the proposed model, turbulence and mean 

flow measurements were made in a 10 x loin. square channel at x/D,  = 84, where 
the flow was essentially fully developed. Corner region measurements were made 
either along or normal to the bisector z' = 0 for a bulk Reynolds number of 
2-5 x lo5; details of the measuring techniques are given in the appendix. The 
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FIGURE 7. Turbulent shear stress distributions along normals to the 
corner bisector z' = 0; Re,, = 2.5 x lo5. 

non-dimensionalized 2 stress values measured along normals to the corner 
bisector are shown in figure 7. These measurements were made at  transverse 
intervals of 0.177in. (Az'lu = 0.025) along normals to the bisector between the 
corner and the axial centre-line of the channel (y'la' = 1.0). The stress values 
shown in figure 7 are generally negative for z' < 0 and positive for z' > 0 which 
is in accordance with anticipated behaviour based on earlier considerations. 

The relative influence of the stress gradients shown in figure 7 on energy losses 
in the flow was examined by experimentally evaluating each term in a non- 
dimensioiialized form of ( I3),  namely 

I A  I B  I I A  I I B  

I1 c I I D  I11 IV 
in which 

x* = x/Dh, y'* G y'/D,, z'* = x'IDh, U* = Ul&, Y'* = V'lU,, 
- -  - 
uv'* uv'p;, uw'* = - uw'IU& Pz =P,/(pUg), Re, = U,Dh/v. 

The results of this evaluation are shown in figure 8. The distributions indicate 
that the energy fluxes associated with I B and I1 D dominate the flow, except 
in the outer portion of the boundary layer. In  the corner region, the energy losses 
incurred by the working of the mean flow against turbulent shear stress gradients 
along the bisector (IIC) and against gradients of the viscous stresses (IIA and 
IIB) are negligible in comparison with the losses which result from transverse 
shear stress gradients in the flow (IID). From the figure it is also evident that 
dissipation losses (IV) are negligible over most of the boundary layer, and that 
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thelosses which result from the productionof turbulent energy from the mean flow 
(111) are small in comparison with the losses associated with I I D ,  even in the 
near-wall region. Within the interval 0 < y’/a‘ 5 0.7 it is apparent that the pri- 
mary flow cannot convect sufficient mean flow energy ( IA)  into volume elements 
on the bisector to compensate for the energy losses which occur within these 
elements. The only mechanism available to compensate for this difficiency is 
additional convective transport into these elements, and therefore a transverse 
flow which transports a net flux of energy into these elements (1.23) must be 
present in order to maintain dynamic equilibrium. In the outer region of the 
boundary layer (y’/a’ 2 0.8), figure 8 indicates that I B ,  I I A ,  IIB, I11 and IV in 
(14) are negligible, and that energy losses which occur within a volume element 
by the working of the mean flow against turbulent shear stress gradients in the 
flow ( I I C  and IID) are essentially balanced by a, net convective transport of 
mean flow energy into that volume element by the primary flow (IA). The above 
results are shown in alternative form in figure 9, where the sum of terms is indica- 
tive of the overall accuracy of the experimental measurements. 
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The preceding remarks apply qualitatively to transitional flow along a corner, 
where the working of the mean flow against transverse turbulent shear stress 
gradients in the corner region can now be regarded as the mechanism which 
both initiates and maintains the secondary flow. As noted earlier, the origin of 
secondary flow can also be explained from a vorticity point of view. Although 
transverse convective transport of mean flow vorticity and mean flow energy are 
actually different manifestations of the same phenomenon, an explanation of 
secondary flow based on vorticity considerations will be pursued in order to 
demonstrate that the origin of secondary flow can be fully explained by means of 
vorticity arguments without recourse to the axial vorticity equation. If (10) 
and (1 1)  are written in terms of the x, y’ and x’ co-ordinates shown in figure 6, 
then all terms of (10) are identically zero along a corner bisector and the non- 
dimensionalized form of (11) which applies along the corner bisector z’ = 0 
for fully developed flow is the following: 

in which 

and 5‘ is the vorticity component of the mean flow directed along the x‘ axis 
(refer t o  figure 10). In  (15) each term can be interpreted as either a loss or gain in 
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7 b Corner bisector 

FIGURE 10. Behaviour of the [, 7’ and 5‘ components of mean flow vortioity 
along the corner bisector z’ = 0 for fully developed flow. 

mean flow vorticity within an inertial volume element on the corner bisector 
depending, respectively, on whether the term is a positive or negative quantity. 
The terms in (15) represent the convective transport of primary-flow vorticity by 
the secondary flow (I), the viscous diffusion of primary-flow vorticity (I1 A and 
IIB) and the change in mean flow vorticity that occurs because of the combined 
effect of time-averaged convection of turbulent vorticity by the turbulent motion 
and the time-averaged production of turbulent vorticity by the stretching of 
turbulent vortex lines (IIIA and IIIB). 

In  accordance with earlier comments it is reasonable to presume that the 
losses in mean flow vorticity associated with IIIB in (15) are primarily respon- 
sible for the initiation of a transverse convective transport of primary-flow 
vorticity. This hypothesis was examined by evaluating each term in (15) from 
the experimental data of the present study. The results are shown in figure 11. 
In  the region near the corner (0 < y’/a’ 5 0.3) the results indicate that a net 
transport of turbulent vorticity by the turbulent motion into volume elements on 
the bisector, coupled with the production of turbulent vorticity within these 
elements (IIIB), leads to a loss of mean flow vorticity which can only be balanced 
by a net convective transport of primary-flow vorticity into these elements by 
the secondary flow (I). The viscous diffusion of primary-flow vorticity (IIA and 
I1 B)  is essentially negligible over most of the boundary layer, and the contribu- 
tion of turbulent shear stress gradients along the bisector to losses in mean flow 
vorticity (IIIA) is also negligible, except in the near vicinity of the corner, where 
IIIA is still, however, significantly less than IIIB. In the outer portion of the 
boundary layer (y’la‘ 2 0.6) I11 A and 111 Bare approximatelyequal inmagnitude, 
but of opposite sign, and therefore convective transport of primary-flow vorticity 
by the secondary flow is negligible in this region. On the basis of these and earlier 
results, it is apparent that vorticity and energy of the mean flow are convected 
inwards towards a corner as a direct result of transverse turbulent shear stress 
gradients in the flow. 
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FIGURE 11. Vorticity balance for the mean motion along the corner bisector 
z’ = 0 ;  Reb = 2 . 5 ~  lo5. ---, I+II+III. 

The mechanisms which influence secondary flow directed away from the 
bounding walls of a corner (refer to figure 1) are also of interest and can be ana- 
lysed to a certain extent by examining the nature of flow along a wall bisector 
of a square channel when the flow is fully developed. In  order to examine the 
possible influence of transverse turbulent shear stress gradients on the flow, 
consider the isotach patterns shown in figure 12, which are based on data taken 
in the present study and are representative of similar data obtained in related 
studies. From the figure it is apparent that the curvature of isotachsin thevicinity 
of the wall bisector z = a changes from convex to concave when viewed along the 
y axis. The behaviour is similar to that which occurs when the flow is developing 
(cf. the changes in isotach curvature which occur along the line z/a = 0.3 at 
x/D, = 8 in figure 4), and consequently the discussion and results which follow 
should also be applicable at  locations where similar changes in isotach curvature 
occur in a developing flow. 

It will first be noted that the foregoing arguments which were used to deduce 
that 3 is positive for z’ > 0 and negative for z’ < 0 can also be used to deduce 
that =values should be positive and negative on either side of z = a as shown 
in figure 12. The results shown in figure 13 support this contention and are based 
on data taken a t  transverse intervals of 0.25 in. (A+ = 0.05) along normals to 
the wall bisector. These results indicate that the transverse shear stress gradient 
at points along the bisector is first negative for 0-05 < y/a 5 0.6 and then positive 
for 0.6 < y/a < 1.0. This behaviour is in agreement with the anticipated change 
in sign of this gradient that should occur along the bisector (refer to figure 12). 



Origin of secondary Jlow in turbulent corner $ow 
1 I 

lTiiT positive izis; negative 
Wdl 

Corner ' bisector 

Wall bisector 

Axial flow \/ I direction 
\ 

I Isotach 

Y 

17 

y=n 

R u m  12. Predicted behaviour of and a stress components in the vicinity 
of wall and corner bisectors for fully developed flow. 

The results also indicate, however, that non-zero ulwvalues were measured on the 
wall bisector, when, indeed, these values should be zero in accordance with 
symmetry considerations. This behaviour is attributable to a slight asymmetry 
of the flow which was observed in the vicinity of the wall bisector. The degree of 
asymmetry was most pronounced in the near-wall region, e.g. at y /a  = 0.05, 
but did not lead to difficulties in evaluating the transverse shear stress gradient 
at this point or at other points along the bisector. 

A comparison between the results shown in figure 13 and isotach patterns in 
the near vicinity of the wall bisector (figure 12) shows that transverse shear 
stress gradients are not necessarily small in regions where changes in isotach 
curvature are relatively mild. The influence of these gradients on maintenance of 
secondary flow directed away from a wall was examined by experimentally 
evaluating the terms of an energy balance written along the wall bisector x = a. 
The non-dimensionalized energy balance which applies after the boundary-layer 
approximations have been introduced is as follows: 

I1 c IID I11 I V  
2 F L M  58 
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FIGURE 13. Turbulent shear stress distributions along normals to the 
wall bisector z = a ;  Re,, = 2.5 x lo5. 

where all of the variables have been normalized by the same normalizing factors 
as those introduced earlier and the physical interpretation of each term is the 
same as that of its counterpart in (14). 

In  accordance with earlier comments, the term I I D  in (16) should f i s t  be 
negative in the inner portion of the boundary layer (0 < y < yo) and then posi- 
tivein the outer portion of this layer (yo < y < a) ,  where yois defined as that value 
of y at which a( U*E*)/az* = 0. Since the convective transport term V*aP,*/ay* 
in (16) is positive for 0 < y < a, it is apparent that the roles of I B and I1 D in 
(1 6) over the interval 0 < y < yo are now reversed from those of their counter- 
parts in (14). More specifically, it would now appear that the working of the mean 
flow against transverse shear stress gradients in the inner region causes a net 
influx of energy into a volume element on the bisector (e.g. element A in figure 
12), which necessarily leads to a net efflux of energy from the element through 
convective transport by the secondary flow. It should be noted, however, that 
because of the relatively gentle changes in isotach curvature which occur in the 
near vicinity of the bisector (refer to figure la), transverse shear stress gradients 
along the bisector are likely to be an order of magnitude less than their counter- 
parts along a corner bisector. This beliaviour, in turn, implies that other factors 
may also significantly influence the secondary flow. Indeed, in the outer region 
of the boundary layer there must be one or more mechanisms other than trans- 
verse shear stress gradients which maintain the secondary flow because I B and 
I1 D in (16) are both positive, i.e. each term is indicative of a net efflux of energy 
from a volume element, such as element B, on the bisector. 

The degree of complexity of the energy fluxes associated with an outwardly 
directed secondary flow is illustrated in figure 14, where the distributions shown 
are based on measurements along and normal to the wall bisector z = a. In  
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z = a ;  R% = 2 . 5 ~  106. 

contrast to the results shown in figure 8, all energy terms are now of the same order 
of magnitude, with the exception of the dissipation term (IV), which is still 
negligible over most of the boundary layer. As anticipated, the convective trans- 
port term associated with the secondary flow (IB) is indicative of a net loss in 
mean flow energy within volume elements on the bisector, whereas the working 
of the mean flow against transverse turbulent shear stress gradients in the flow 
(IID) can yield either a net gain or loss of energy within an element depending on 
its locat,ion from the wall. In  the near-wall region (y /a  N 0.1) the energy gained 
by the working of the mean flow against turbulent shear stress gradients along 
the bisector (IIC) is essentiallybalanced by the losses incurred by the production 
of turbulent energy from the mean flow (111). In this region, therefore, convective 
transport of mean flow energy by the primary (IA) and secondary (IB) flows 
causes a net efflux of energy which is approximately balanced by the gain in 
energy which occurs as a result of work done on the mean flow by transverse 
shear stress gradients in the flow (IID). In  the outer region of the boundary layer 
(y/a > 0.6), IA  is negative, I1 C and I I D  are both positive and the net energy flux 

2-2 
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bisector 

associated with the sum of these terms serves to  maintain a weak secondary 
flow in this region. 

The distributions shown in figure 14 are plotted in alternative form in figure 15, 
where the sum of terms is indicative of the overall accuracy of the measurements. 
On the basis of these and earlier results, it is apparent that the interactions which 
occur between the mean flow and its associated turbulence structure are relatively 
complex for turbulent flow along a corner. The complexity of these interactions 
does not, however, lead to difficulties in interpreting the results or in identifying 
the origin of secondary flow from either an energy or vorticity point of view. 

4. Concluding remarks 
The results of the present study show that transverse gradients of Reynolds 

shear stress components which influence the streamwise shear characteristics of 
the primary flow, namely ZCV and UW or, alternatively, 2 anduw’,? are directly 
responsible for the generation of secondary flow in turbulent flow along a corner. 

t The uw’ and uw’ stress components referred to the 2, y’, z’ co-ordinate system (figure 6) 
a10 uniquely rela.ted to the Ti5 and UW stress components through the following transforma- 

- -  

tions : I - _  
uv’ = uw 00s yy’ + ZG cos zy’, uw/ = zcv cos yz’ + uw 00s 2.2‘. 



Origin of secondary $ow in turbulent corner flow 21 

This secondary flow acts as a convective transport mechanism in planes normal 
to the primary-flow direction. In  terms of first-order effects, secondary flow 
convects momentum (pU) and vorticity (7 and c) of the primary flow, as well as 
the total energy of the mean motion (Po/p). This conclusion follows directly from 
the momentum, vorticity and energy balances given by (l), (iO), (11), (14) and 
(16), all of which contain terms involving transverse gradients of the UV and UW 
stress components. 

With reference to second-order effects, it will first be noted that 5, the stream- 
wise vorticity component of the mean motion, is typically two orders of magni- 
tude less than either 7 or 6 in a corner region. Previous studies have shown that 
convective transport of streamwise vorticity by secondary flow is due primarily 
to the production of turbulent vorticity from the mean flow via transverse gradi- 
ents of Reynolds stress components which act wholly in planes normal to the 
primary flow direction, i.e. v2, w2 and VW (cf. equation (12) and results presented 
by Brundrett & Baines 1964 and Perkins 1970). This conclusion does not 
contradict the foregoing results, but simply means that other manifestations 
of the turbulent field are required in order to describe second-order effects. 

Similar reasoning applies to the mechanisms responsible for the convective 
transport of turbulence kinetic energy, k, noting that k is typically two orders 
of magnitude less than its mean flow counterpart, Po/p. On the basis of results 
presented by Hinze (1967), it is known that convective transport of turbulence 
kinetic energy by secondary flow is governed primarily by the production of 
turbulent energy (via terms of the form GZ aU/ay and u.W aU/ax) and the dissipa- 
tion of turbulent energy (via terms involving correlations between components 
of the instantaneous turbulent rate of strain tensor). Again, however, convective 
transport of turbulence kinetic energy by secondary flow is a second-order effect, 
and one would anticipate that mechanisms other than those associated with 
transverse gradients of the UV and UW stress components would govern the 
overall process. 

The implications of the foregoing results on the generation of secondary flow 
in other flow situations merit further comment. In  general, it would appear that 
whenever variations in isotach curvature occur in a laminar flow undergoing 
transition, transverse turbulent shear stress gradients are generated along an 
isotach which necessarily give rise to a transverse flow directed from the concave 
toward the convex side of the isotach. If this statement is valid, it would explain 
the appearance of secondary flows which have been observed in other flow 
situations, such as turbulent flow over an external corner (Nikuradse 1930) and 
turbulent flow over a flat plate of finite width (Elder 1960). The consistency of 
this argument with the physical flow situation for each case can be illustrated 
by considering an approximate form of (13), namely 

-- 

r a p o  a - 
-- + -, (UUW') 21 0, 
p ayf ax 

IB I I D  

which should be roughly applicable in an edge or corner region, where the energy 
transfer mechanisms associated with terms I B and I1 D are likely to dominate 



22 P. B. Gessner 

V‘ 

- 
uw’ positive ‘ I T  IID negative IID negative 

IB positive 

flow direction 

(4 (b) 

FIGURE 16. Predicted behaviour of stress component and V’ component of secondary 
flow in other flow situations. (a) External corner flow. (b)  Flow over a flat plate of finite 
widt,h. 

the flow. The anticipated sign of I I D  in the region where changes in isotach 
curvature are maximal for each case is shown in figure 16 for early transitional 
flow. In accordance with earlier comments it is reasonable to presume that IID 
will be negative in the transition region, even though the flow is only inter- 
mittently turbulent. This behaviour, in turn, implies that I B  will be positive, 
and consequently a transverse flow will be generated which is directed as shown 
on each diagram. It may be noted that the indicated outward direction of the 
secondary flow for each case is consistent with the experimental observations of 
Nikuradse (1930) and Elder (1960). Similar arguments can be applied to deduce 
the direction of secondary flow in a bounded rectangular turbulent jet and in 
turbulent flow over a flat plate with a transverse variation in wall roughness, as 
observed by Foss & Jones (1968) and Hinze (1967), respectively. I n  both types of 
flow, variations in isotach curvature exist when the flow is laminar which may well 
lead to the development of secondary flow via the mechanism described in the 
present paper when the flow becomes turbulent. The applicability of the fore- 
going arguments to these and other related flow situations should be the subject 
of further study. 
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Appendix. Experimental apparatus and measurement techniques 
The measurements were made in a square channel lined with Formica and 

joined to  a smoothly contoured contraction made of molded fibreglass. The 
contraction was preceded by an inlet section composed of a plenum chamber 
with screens, a honeycomb, and a filter section. The width of the channel between 
opposite interior walls was maintained a t  10 0.010 in. and the bounding walls 
of each corner were perpendicular to within f 0.05'. Air was drawn into the inlet 
section by means of a centrifugal fan located downstream of the channel exit 
and the flow was allowed to develop in the absence of a tripping device a t  the 
channel inlet. All probes were positioned by means of a traversing mechanism 
with a movable plate whose inner surface was maintained flush with the interior 
surface of one channel wall. Static pressure taps mounted on the movable plate 
were used to monitor the local wall static pressure. A miniature Kiel probe was 
used in conjunction with one of these taps to measure boundary-layer profiles 
and isot,ach patterns in the channel. Secondary-flow velocity components were 
measured by means of a single-wire rotation technique developed by Hoagland 
(1960) and subsequently modified by Gessner (1964). 

Turbulent shear stress measurements were made with a 0.00015 in. diameter 
tungsten wire having an active length of N 0-030in. which was inclined a t  a 
nominal angle of 45' with respect to the axial flow direction. The wire was 
mounted on a probe alignedwith the axial flow direction and rotation of the probe 
about its centre-line axis permitted the wire to be positioned in two different 
positions in each plane of interest, i.e. in the xy, xy', xz or a' plane. The wire was 
operated at constant temperature by means of a Thermo-systems Model 1010 
anemorneter and was caIibrated periodically in fully developed turbulent pipe 
flow. 

In  order to correlate velocity fluctuations with voltage fluctuations across 
the wire, the following energy balance was assumed to apply instantaneously to 
the wire : 

E2 = A +Bur, (18) 

where E is the instantaneous voltage across the wire, A and B are temperature- 
dependent coefficients which were assumed to be constant, U,is the instantaneous 
effective cooling velocity, and n is an exponent whose value depends, in general, 
on the local flow conditions. If the wire is assumed to lie in the 2, y plane, then, 
on the basis of results presented by Hill & Sleicher (1969), U, can be represented 

U, = (U + u) cosa(1 + Ptan2a)g + w sin a( 1 - Ic2)/(1+ k2 tan2a)t, (19) 
as 

where a is the angle between the normal to the wire and the axial flow direction 
and lc is a factor which accounts for tangential cooling effects along the wire. An 
expression for Z / U 2  in terms of bridge output voltages from the anemometer can 
be developed by substituting the expression for U, into (1  8) and time averaging 
the results. The resulting expression is 
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in which K(a, k, n) = (1  + k2 tan2 a)/[n2( 1 - k2) tan a], zb and Eao are mean bridge 
output voltages for heated and unheated conditions, respectively, and ez and 
e t  are mean-square voltages of the bridge voltage fluctuations with the wire in 
positions 1 and 2 (i.e. inclined at f a) in the x, y plane. 

Instead of attempting to estimate K(a, k, n) from explicit values of a, k and n, 
this factor was evaluated by means of an iterative procedure as follows. The 
inclined wire probe was initially located in fully developed turbulent pipe flow, 
where it was assumed that 

- 

in which R is the pipe radius, y is the perpendicular distance from the wall, 
and u, is the friction velocity, as evaluated from static pressure drop measure- 
ments along the pipe. The wire was traversed across the pipe radius and values 
of uV/U2 were evaluated from (20) for an estimated nominal value of K under flow 
conditions similar to those in the channel. These values were compared with their 
counterparts predicted from (21) and K was then adjusted to give the best least- 
squares fit of the data to the analytical distribution. By following this procedure, 
it was possible to determine K(a,  k, n) directly without having to measure the 
angle of inclination a, or determine a value for k (e.g., from the results of Charn- 
pagne, Sleicher & Wehrmann 1967), or even estimate an appropriate value for n. 
This approach facilitated the reduction of turbulence data and led to consistent 
and repeatable results. 

REFERENCES 

BRUNDRETT, E. 1963 The production and diffusion of vorticity in channel flow. Dept. 
Mech. Engng, University of Toronto, Rep. TP 6032. 

BRUNDETT, E. & BAINES, W. D. 1964 The production and diffusion of vorticity in duct 
flow. J .  Fluid Mech. 19, 375-394. 

CHAMPAGNE, F. H., SLEICEIER, C. A. & WEHRMANN, 0. H. 1967 Turbulence measurements 
with inclined hot wires. Part 1. Heat transfer experiments with inclined hot-wire. 
J .  Fluid Mech. 28, 153-175. 

EICHELBRENNER, E. A. & PRESTON, J. H. 1971 On the role of secondary flow in turbulent 
boundary layers in corners (and salients). J .  Mdcanique, 10, 91-112. 

EICHELBRENNER, E. A. & TOAN, N. K. 1969 A propos des vitesses secondaires dans la 
couche limite turbulente B l'int6rieur d'm di8dre. Comptes Rendus, 269, 869-872. 

EINSTEIN, H. A. & LI, H. 1958 Secondary currents in straight channels. Am. Ceophys. 
Un. 39,1085-1088. 

ELDER, J .  W. 1960 The flow past a flat plate of finite width. J .  Pluid Mech. 5 ,  133-153. 
FOSS, J. & JONES, J. B. 1968 Secondary flow effects in a bounded rectangular jet. J .  Bagic 

GESSNER, F. B. 1964 Turbulence and mean-flow characteristics of fully developed flow in 

GESSNER, F. B. & JONES, J .  B. 1961 A preliminary study of turbulence characteristics 

GESSNER, F. B. & JONES, J. B. 1966 On some aspects of fully developed turbulent flow 

HILL, J. C. & SLEICHER, C. A. 1969 Equations for errors in turbulent measurements with 

E T P ~ , ~ ,  Tram. A.S.M.E. 90, 241-248. 

rectangular channels. Ph.D. thesis, Purdue University. 

of flow along a corner. J .  Basic Engng, Trans. A.S.M.E. 83, 657-662. 

in rectangular channels. J .  Pluid Mech. 23, 689-713. 

inclined hot wires. Phys. Fluids, 12, 1126-1127. 



Origin of secondary flow in turbulent corner flow 25 

HINZE, J. 0. 1959 Turbulence. McGraw-Hill. 
HINZE, J .  0. 1967 Secondary currents in wall turbulence. Phys. Fluids, 10 (suppl.), 

HOAGLAND, L. L. 1960 Fully developed turbulent flow in straight rectangular ducts - 
S 1224125 .  

secondary flow, its cause and effect on the primary flow. Ph.D. thesis, Department of 
Mechanical Engineering, Massachusetts Institute of Technology. 

NIKURADSE, J. 1926 Untersuchungen uber die Geschwindigkeitsverteilung in turbulenten 
Strijmungen. Thesis, Gottingen. (See also Forschungsh. Ver. dtsch. Ing., 281.) 

NIKURADSE, J .  1930 Turbulente Stromung in nicht kreisformigen Rohren. Ing. Arch. 1, 

PERKINS, H. J. 1970 The formation of streamwise vorticity in turbulent flow. J .  Fluid 

PRANDTL, L. 1926 nber die ausgebildete Turbulenz. Verh. 2nd Int. Kong. fiir Tech. Mech. 

PRANDTL, L. 1952 Essentials of Fluid Dymmics. London: Blackie. 
TOWNSEND, A. A. 1961 Turbulence. In  Handbook of Fluid Dynamics (ed. V.  L. Streeter), 

ZAMIR, M. & YOUNG, A. D. 1970 Experimental investigation of the boundary layer in a 

306-332. 

Mech. 44,721-740. 

Ziirich, pp. 62-75. (Trans. N.A.C.A. Tech. Memo. no. 435.) 

§§10.1-10.33. McGraw-Hill. 

streamwise corner. Aero. Quart. 21, 313-339. 




